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Hierarchical approach to diffusive flow in heterogeneous systems

YUksel GinaF and P. B. Visschér
Department of Physics, University of Alabama, Tuscaloosa, Alabama 35487-0324
(Received 25 July 1996

Conventional methods for the simulation of diffusive systems are quite slow when applied to strongly
inhomogeneous systems. We present a hierarchical approach motivated by dynamic renormalization-group
ideas and based on the Walsh transfdon Haar waveletof signal-processing theory. The method is very
efficient for simulation of petroleum reservoirs or other strongly inhomogeneous diffusive or pressure-driven
flow systems. As we increase the number of cHllsito which a sample inhomogeneous two dimensional test
system is divided, the method becomes faster than conventional finite-difference methdeslb 16, and
is roughly 40 times faster &l=64X 64; we argue that the speedup factor should asymptotically increase at
least proportionally tdN?. [S1063-651X97)07505-3

PACS numbg(s): 47.11:+j, 02.60.Pn, 47.55.Mh

Traditional finite-element and finite-difference methodsbeen so useful in the theory of critical phenométg al-
for numerical solution of differential equations have a dis-though our present description does not require prior knowl-
cretization error that depends on a power of the time or spacedge of renormalization-group theory. It has been shi2yn
increment,At or Ar. In the case of a diffusive system, sta- that the diffusion problem in domogeneousystem has a
bility usually requiresAt to be of orderAr2/D (whereD is  fixed point with respect to a combined space-and-time renor-
the diffusivity), and the discretization error is proportional to Malization transformation. That is, we can continue coarsen-
a power ofAr. In highly inhomogeneous systems, parts of Nd the space and time scales indefinitely without indefinitely

which require very smallAr and/or very large diffusivity ncreasing the size of the influence-function list.
D, this requires a very smallt. Such cell coarsening is even more useful in an inhomo-

The instability for largeAt arises when material moves geneous system, because we can use physical information to
. : . . : choose which cells to lump together. An inhomogeneous sys-
more than one cell diameter during the time intera) in

th | licit finite-diff FD) algorith terial tem such as an oil reservoir tends to be compartmentalized
the usual explicit finite-di erenceE ) aigorithm, matenial compartments within which oil flows fairly freely, sepa-
is allowed to move from a cell only into its nearest neigh-

X : ._rated by relatively impermeable regions. If we lump cells
bors. Our approach solves this problem by allowing materiahenyeen which there is relatively free flothigh effective

to move across as many cells as necessary. We describe g sivity), when we reach a large scale the cells wilthe
motion of the material by a discrete Green function or influ-compartments.

ence functionG,(d,s) such thatG,(d,s)c(s) is the We can visualize the hierarchical lumping of cells by
amount of material that moves from a source egfivhose  placing the cells on a binary tree as in Fig. 1.
original material content is(s)] to a destination celdl dur- The disadvantage of this coarsening process, of course, is

ing the time intervalAt. If G,(d,s) is nonzero only when that we lose spatial resolution in our description of the sys-
d ands are nearest neighbor cells, this is equivalent to @em. To some extent such a contraction of the description is
conventional EFD algorithm. This is the case for sufficientlydesired, but we would like to maintain control of our ap-
small At, so we may begin with such an algorithm and proximations and limit the loss of information. When we
coarsen the time scale by doublidg. The influence func- replace contents(l) andc(l’) of two cells| andl’ by the
tion for the interval At is obtained from that foAt by  coarse-grained contem(L)=c(l)+c(l’) where the larger

self-convolution[see Eq(8) below]. cell L is the union ofl andl’, we can avoid losing any
Of course, this repeated convolution process increases the
spatial range of the influence function, which is stored in our System Tree

computer implementation as a linked list; soon the number of

destination cellgl that can be reached from each source cell

s becomes large and the method becomes very time-
consuming. However, we can coarsen the space as well as g
the time scale, by lumping cells together into larger cells. ; '
This decreases the number of source cells, as well as the
number of destination cells reached from each source cell,

and hence the size of the influence-function list. This scheme D@ :l @
is motivated by the renormalization-group method which has )

FIG. 1. Sketch of a hierarchically subdivided systégft) and
*Electronic address: gunal@pi.ph.ua.edu its representation as a binary tr@eght). Cell L is subdivided into

TElectronic address: pv@pi.ph.ua.edu | andl’ as described in the text.
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information if we also include as a variable the differencelLinearizing in the small quantity (and in the corresponding
c(L,)=c(l)—c(l") as well as the sunc(L,0) (the argu- small variations inp andP) and defining the bulk modulus
ments 0 and 1 simply indicate whether a sum or a differenc8= pdP/dp, we can express everything in termsgof
is intendedl.

We can do this at any level of the tree shown in Fig. dp(r,t)
1—the difference between the two halves of the small cell dt
| can be denoted byg(l,1). We can even define a difference
of differencesc(L,1,1)=c(l,1)—c(l’,1). Each 1 in this ex- whereD(r)=BK(r)/u is an effective diffusivity, very het-
pression can be regarded as one bit of a “Walsh sequenerogeneous in a typical carbonaceous oil reservoir because it
index” w. (The Walsh transform is a discrete signal trans-is proportional to the permeabilitg. So the problem we will
form used in electrical engineerih8,4], which we here gen-  actually solve is that of diffusion in a very inhomogeneous
eralize to a hierarchical systenWe will lump the bitsintoa  system.

=V-[D(r)Vp(r,t)], 4

single binary integefWalsh index w, soc(L,1,1) becomes To describe the evolution of the cell contexnfd) of a
c(L,w) with w=3. We define a general “Walsh variable” cell labeledd (proportional to the density), the most
recursively by straightforward discretization of E@4) is
c(L,w0)=c(l,w)+c(l’',w), Cirar(d)—cy(d) 1
AT Tary DDled () —e(d)],
c(L,wl)=c(l,w)—c(l’,w), (1) (5)

whenever andl’ are the two halves of the cdll. Here the

Walsh indexwO is w with a zero bit appended at the right where the sum is over facésof the celld, andd.(f) is the

) 0=2w- similarly wi=2w+1. In thi ati ' cell in front of the (directed face f (the cell behind it is
1€, WO=2w, simiiarly wi=csw+L1. In this notation, our alwaysd). When we lump cells, so some of our variables are

original c(l) is written c(l,0) and serves to start the recur- Walsh variableg(d,w), we can write the discretizatidiEq.
sion. The Walsh index plays a role similar to that of the wave(s)] in the form T

number in the Fourier transform, in that variables with a
small Walsh index describe large-scale structure, whereas

large Walsh indices describe short wavelength structure ct+At(d,w):2 Gai(d,w;s,v)c(s,v), (6)
within a cellL. For each 1 bit in the binary representation of S

w, there is one subtraction in the constructioncéff,w). ) ) . .

If each cell lumping replaces two cell contents by tWOy\/hereGAt(d,w;s,v) is an mflut_ance function descrlblng_the
Walsh variables, the number of variables remains the sam@fluénce of a Walsh variable in the source ebn one in
and we have gained nothing yet. However, our algorithmthe destlnatlc_)n celtl. Before any lumping has occurred, all
drops terms from the influence function if they are less tha¥Valsh Zvarlabl(_es have w=0, and G,(d,0;s,0)
some preset tolerana® Typically, these are terms involving = (At/Ar9)D(f) if d ands are neighbors separated by the
differences (i.e., having large Walsh indiceswhich are face f. ~ The dlagonal influence  function
much smaller than those involving sums. This is the virtue 0fCat(d,0;d,0)=1—X(At/Ar“)D(f), where the sum is over
the hierarchical description: terms describing the effects of &€ facesf of the celld, and all otheiG’s are zero. Equation
cell content are never negligible compared to the terms fof6) is thus equivalent to an EFD algorithm, which requires a
nearby cells, whereas terms describing the effects of differsmall At; we have used the practical limit of stabilifg],
ences may be negligible compared to terms for sums. These 5
advantages are similar to those of spectfdurier trans- At=Ar%/4D a, (7)
form) methods in homogeneous systems; in a sense one can ) ) S
regard the Walsh transform as the proper generalization o¥N€réDmax IS the maximum dlfoSIVIty_ln the system.
the Fourier transform to inhomogeneous systems. We now mcreasat to 2At; the new influence function is

Commercial reservoir simulation programs usually treat ghe convolution
reservoir as a three-component sys{é&j(oil, gas, waterin
which flow is governed by Darcy’s law. However, to provide . _ . .

a simple test of the hierarchical method described above, we Gaadwis,v) Zj Gat(d,w;e,u)Gy(e,u;s,v). (8)

will consider only one componertoil), in which case Dar-

cy’s law reduces to the diffusion equation. To see this, begirAfter several such convolutions, the spatial range of the in-
with Darcy’s law for the velocityv: fluence function is increased, especially in regions of high
diffusivity. Here the pressuré.e., density in nearby cells
equalizes rapidly—the content$l) andc(l’) of two nearby
cells contribute nearly equally to future contertgd):
G(d,0;1,0)~G(d,0;1",0) (the zeros here are the Walsh indi-
whereK is the permeabilityu is the viscosity, andP is the  ce9. To decide whether two cellsandl’ should be lumped

K
v=——VP, 2
72

pressure. Then the continuity equation for the density together, we look at the ratio
do_ ; _G(1,01',0 o
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FIG. 2. The permeability distribution used for the>684 sys- ) T .
tem[7]. Halftone density varies linearly with Ij or In(D), in such | FIG. 3. The final densny dlsmbu“oh in the 8254 system Wlth.
a way that the mean halftone density is 0.5 and the minimum peanhomogenelt_y =20, showing bogndarles of lumped cells. Density
meability displayedas black differs from the maximuntwhite) by va:lules are printed a_t sevc_aral pc;lrt:t_s,hscaled),sgl_ltoo. Note that
a factor of 4x 10%, for the case of inhomogeneity=20. (In case of Cell lumping occurs in regions of high permeabiiity.
difficulty in reproducing the figures in print, they are also presented

at the web site http://www.mint.ua.edu/geo/flow/. The diffusivity (i.e., permeability distribution we have

used is shown in Fig. 2. It is a realization of a log-normal
We lumpl and !’ if r exceeds a lumping thresholg,,,,  distribution with fractal spatial correlations, obtained by ex-
which we will tune to maximize the speed of the algorithm Ponentiating a correlated Gaussian distribution described
(see Fig. 5 When we decide to lump cellsand|’ into a  €lsewherg7]. We adjust the normalized standard deviation
large cellL (as in Fig. 2, we can calculate the new influence | bY scaling the Gaussian distribution before exponentiating
function in two stages. In the first stage we calculate elell: The prefactor that governs the overall scale of the diffu-
ments G’ (d,w:s,0) in which the destinationcell d takes sivity or pe_rmeab|llty can be removed from the problem by
coarse valuegincluding L) but s takes values including ~ rescaling time.

andl’. These are the same as the @t unlessd is L, in The system shown in Fig. 2 is 6454; we specify the
which case we obtain from Eql) permeability in the smalleN systems by coarse graining

(averaging over X2 or 4x4 celly. The permeability at a
G'(L,w0;s,0)=G(l,w;s,v)+G(l',w;s,v), face is taken to be the average of that in the adjoining cells.

As a test initial condition, we use é&-function density con-
G'(L,wl;s,0)=G(l,w;s,v)—G(I",w;s,v), (10 centrated in the lower left cell of the system. After an infinite

time, the density takes a uniform valge ; we evolve the

second stage, we calcula®’(d,w;s,v) where bothd and  the result in Fig. 3.

s take valued. and notl or |,: we coarsen the source cell. To Compare our Scheme with an EFD a|gorithm' we Vary
Again, G"(d,w;s,v)=G’(d,w;s,v) unlesss=L, in which  the remaining parameter, the toleranteWe plot in Fig. 4
case the required CPU timgon a Silicon Graphics R4000PC

Indy, 133 MH2 against the accuracy achieved, defined by

G"(d,w;L,v0)=3[G’(d,w;l,v) +G'(d,w;l",v)], the fractional rms error

G"(d,w;L,v1)=3[G'(d,w;l,v)—G'(d,w;l",v)]. _ 2
(1D (erron2=N"1> (M) , (12
Cc [

Although we have developed both three dimensi¢88)
and 2D programs, we have done test calculations on a 2Bvhere po,,{C) is the EFD result to which our result con-
system to simplify the displayFigs. 2 and 3 The test sys- verges as—0.
tem has impenetrable barriers and four control parameters: Note that the speedup factor of our algorithm compared to
N,I,8, andr. The first two describe the complexity of the the EFD algorithm increases rapidly as the allowable error is
system:N is the system size (2616 to 64x64) and the increased. It is indicated by an arrow at the error value of
inhomogeneity parametéris a normalized standard devia- 1.5%, where it is about 25. Using this factor as a figure of
tion: the standard deviation of the permeability divided bymerit for our algorithm, we plot it in Fig. 5 as a function of
the mean permeability. the lumping parameter,,.4 [EqQ. (9)], and choosé& ,,,=0.9

The other two parameters are the error tolerafio@hich  as an optimal value.
we choose to give an acceptable overall truncation error, and The virtue of our hierarchical algorithm is that it frees us
the lumping threshold,,, [Eq. (9), Fig. 5]. from having to choose a uniform cell sizex. The conver-
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FIG. 4. Logarithmic plot of the CPU time required by our hier-
archical influence function algorithm, compared to that required by
an explicit finite-difference(EFD) algorithm, for 64x64 and 02 _
32X 32 systems with inhomogeneity=20. Smaller numbers by 8x8 16)216 N 32)'(32 64;1(64

some data points indicate the tolerant¢10 8-10"2).

gence of the method is controlled by the error toleraice  FIG. 6. Logarithmic plot of the CPU time required by the EFD
rather thanAx or the number of celldN. We must still  algorithm and our hierarchical algorithffabeled “Hier”), versus
choose a value foN in order to specify the diffusivity at the spatial resolutiorfthe number of cellN). The dashed exten-
each face. However, for lardé we will lump each cell many sions to the right of the data points indicate the expected asymptotic
times before starting the actual evolutipg. (6)], so the behavior (N? or N°, respectively; the EFD curve is less smooth
CPU time for the evolution will become independent of thebecause of large statistical fluctuations in the extremal value
spatial resolution of the permeability distributigne., of Dmax-

N). Figure 6 shows that we have not yet reached this . I .
asymptotic regiorjthis is also apparent from Fig. 3, which with N is apparent in Fig. 6. Note that the dependence of this

shows that many of the originasmallest cells remain after EFD CPU time on the diffusivitD ma [Eq. (7)] at the single
cell lumping. Nonetheless, our algorithm is already much point of highest diffusivity gives it very large statistical fluc-
faster than the EFD, whose CPU time increase®i43 tuations. (For example, there is an upward fluctuation at
(becauseA t Ax2/D < 1/ND; s, SO the number of time N=32x32 which exaggerates_ the speedup factor for that
steps<ND,,, and the CPU time per time step alsN). N.) The average . Clearly will increase withN (the ex-

This rapid increase of the CPU time of the EFD algorithmtreme value in a large sample is likely to be larger than in a
small samplg but the increase can be shown to be slower

thanN itself, so we have ignored it in extrapolating the data
of Fig. 6 to the right with a dashed line of slope 2. The curve

scribed in the text.

2 ¢ "
20 i . ] for our hierarchical algorithm has no such large statistical
L . . fluctuations. We are not yet in the asymptotic region where it
28 . 1 becomes independent b this is also apparent from Fig. 3,
26 - . . which shows that many of the origingmallest cells re-
o 24t i main after cell lumping. However, the advantage over the
13 ool ' . EFD algorithm is already substantial.
et . 1 We are using the explicit finite-difference algorithm as
_5‘ 20 ] our point of comparison, not because it is the most efficient
8 18 - . .
A 16 L . ] TABLE I. Speedup factor as a function of system shktefor
r . three values of the inhomogeneity Tolerance isé=10*. The
14 i \ . ‘ . 1 1 large values aN=32Xx32 are due to a fluctuation @, as de-
1.0

0 02 04 06 08

T (lumping threshold)
System size
FIG. 5. Speedup factor as a function of the lumping threshold 8x8 16x16 3232 6464
r [Eq (9)], in a 32x32 system with inhomogeneity=20 and 10 0.2 1.6 15 18
tolerances=10"*. Evidently performance improves as we increase 0.3 3.0 32 43
r toward 1.0. Placing very close to 1.0 risks magnifying the ef- ' '
40 0.3 5.2 63 71

fects of small numerical errors, so we used0.9 in the other
figures.
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existing algorithm, but because it is the simplest. Implicit[9], wherein larger grid sizes are used in regions where fields
algorithms can be stable for largért, but incur errors of do not vary rapidly in space, and finer grids are used where
order 100% whemt exceeds ours by more than a factor of there are fine-scale variations in the fields. These methods do
order 2, so this does not affect our conclusions. not retain subgrid-scale information such as is contained in

The dependence of the speedup factor on the inhomog@ur Walsh variables. Unlike in our approach, the time incre-
neity is shown in Table I. Evidently the influence-function ment cannot be increased above what is stable on the finest
algorithm is most advantageous in highly inhomogeneougrig.

systems. ) . In conclusion, we have shown that a hierarchical algo-
Although the method described here has some features ifjhm pased on the dynamic renormalization group and the
common with methods already in common use in grid-basedya|sh transform can simulate diffusive flow in an inhomo-

numegcal_tswr#_ngnon, f”O'ﬁeh of these older tmethqlf_jhs %p' eneous system much more efficiently than conventional
proaches Its efliciency for Innomogeneous systems. 1he ite-difference algorithms. This occurs because the rapid

of coarsening cells_, is used in “multigrid’_’ methods]. For . power-law dependence of CPU time on the fundamental
example, the solution of Laplace’s equation by the relaxatio calesAr andAt is replaced in the hierarchical method by a
method is very slow on a fine grid. It can be speeded up b-Y

. ; . ) i ogarithmic dependence.
doing a few iterations of relaxation on a larger grid to get the
coarse features of the solution correct, and then returning to The work described here was partially supported by the
the fine grid to improve the finer features. ComputationalU.S. Department of Energy under Cooperative Agreement
fluid dynamics codes often use an “adaptive grid” methodNo. DE-FC02-91ER75678.
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