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Hierarchical approach to diffusive flow in heterogeneous systems

Yüksel Günal* and P. B. Visscher†

Department of Physics, University of Alabama, Tuscaloosa, Alabama 35487-0324
~Received 25 July 1996!

Conventional methods for the simulation of diffusive systems are quite slow when applied to strongly
inhomogeneous systems. We present a hierarchical approach motivated by dynamic renormalization-group
ideas and based on the Walsh transform~or Haar wavelet! of signal-processing theory. The method is very
efficient for simulation of petroleum reservoirs or other strongly inhomogeneous diffusive or pressure-driven
flow systems. As we increase the number of cellsN into which a sample inhomogeneous two dimensional test
system is divided, the method becomes faster than conventional finite-difference methods byN516316, and
is roughly 40 times faster atN564364; we argue that the speedup factor should asymptotically increase at
least proportionally toN2. @S1063-651X~97!07505-3#

PACS number~s!: 47.11.1j, 02.60.Pn, 47.55.Mh
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Traditional finite-element and finite-difference metho
for numerical solution of differential equations have a d
cretization error that depends on a power of the time or sp
increment,Dt or Dr . In the case of a diffusive system, st
bility usually requiresDt to be of orderDr 2/D ~whereD is
the diffusivity!, and the discretization error is proportional
a power ofDr . In highly inhomogeneous systems, parts
which require very smallDr and/or very large diffusivity
D, this requires a very smallDt.

The instability for largeDt arises when material move
more than one cell diameter during the time intervalDt; in
the usual explicit finite-difference~EFD! algorithm, material
is allowed to move from a cell only into its nearest neig
bors. Our approach solves this problem by allowing mate
to move across as many cells as necessary. We describ
motion of the material by a discrete Green function or infl
ence functionGDt(d,s) such that GDt(d,s)c(s) is the
amount of material that moves from a source cells @whose
original material content isc(s)# to a destination celld dur-
ing the time intervalDt. If GDt(d,s) is nonzero only when
d and s are nearest neighbor cells, this is equivalent to
conventional EFD algorithm. This is the case for sufficien
small Dt, so we may begin with such an algorithm an
coarsen the time scale by doublingDt. The influence func-
tion for the interval 2Dt is obtained from that forDt by
self-convolution@see Eq.~8! below#.

Of course, this repeated convolution process increases
spatial range of the influence function, which is stored in o
computer implementation as a linked list; soon the numbe
destination cellsd that can be reached from each source c
s becomes large and the method becomes very ti
consuming. However, we can coarsen the space as we
the time scale, by lumping cells together into larger ce
This decreases the number of source cells, as well as
number of destination cells reached from each source
and hence the size of the influence-function list. This sche
is motivated by the renormalization-group method which h
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been so useful in the theory of critical phenomena@1#, al-
though our present description does not require prior kno
edge of renormalization-group theory. It has been shown@2#
that the diffusion problem in ahomogeneoussystem has a
fixed point with respect to a combined space-and-time ren
malization transformation. That is, we can continue coars
ing the space and time scales indefinitely without indefinit
increasing the size of the influence-function list.

Such cell coarsening is even more useful in an inhom
geneous system, because we can use physical informatio
choose which cells to lump together. An inhomogeneous s
tem such as an oil reservoir tends to be compartmental
into compartments within which oil flows fairly freely, sepa
rated by relatively impermeable regions. If we lump ce
between which there is relatively free flow~high effective
diffusivity!, when we reach a large scale the cells willbe the
compartments.

We can visualize the hierarchical lumping of cells b
placing the cells on a binary tree as in Fig. 1.

The disadvantage of this coarsening process, of cours
that we lose spatial resolution in our description of the s
tem. To some extent such a contraction of the descriptio
desired, but we would like to maintain control of our a
proximations and limit the loss of information. When w
replace contentsc( l ) andc( l 8) of two cells l and l 8 by the
coarse-grained contentc(L)[c( l )1c( l 8) where the larger
cell L is the union of l and l 8, we can avoid losing any

FIG. 1. Sketch of a hierarchically subdivided system~left! and
its representation as a binary tree~right!. Cell L is subdivided into
l and l 8 as described in the text.
6197 © 1997 The American Physical Society
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6198 55YÜKSEL GÜNAL AND P. B. VISSCHER
information if we also include as a variable the differen
c(L,1)[c( l )2c( l 8) as well as the sumc(L,0) ~the argu-
ments 0 and 1 simply indicate whether a sum or a differe
is intended!.

We can do this at any level of the tree shown in F
1—the difference between the two halves of the small c
l can be denoted byc( l ,1). We can even define a differenc
of differencesc(L,1,1)[c( l ,1)2c( l 8,1). Each 1 in this ex-
pression can be regarded as one bit of a ‘‘Walsh seque
index’’ w. ~The Walsh transform is a discrete signal tran
form used in electrical engineering@3,4#, which we here gen-
eralize to a hierarchical system.! We will lump the bits into a
single binary integer~Walsh index! w, soc(L,1,1) becomes
c(L,w) with w53. We define a general ‘‘Walsh variable
recursively by

c~L,w0![c~ l ,w!1c~ l 8,w!,

c~L,w1![c~ l ,w!2c~ l 8,w!, ~1!

wheneverl and l 8 are the two halves of the cellL. Here the
Walsh indexw0 is w with a zero bit appended at the righ
i.e., w0[2w; similarly w1[2w11. In this notation, our
original c( l ) is written c( l ,0) and serves to start the recu
sion. The Walsh index plays a role similar to that of the wa
number in the Fourier transform, in that variables with
small Walsh index describe large-scale structure, whe
large Walsh indices describe short wavelength struc
within a cellL. For each 1 bit in the binary representation
w, there is one subtraction in the construction ofc( l ,w).

If each cell lumping replaces two cell contents by tw
Walsh variables, the number of variables remains the s
and we have gained nothing yet. However, our algorit
drops terms from the influence function if they are less th
some preset toleranced. Typically, these are terms involvin
differences ~i.e., having large Walsh indices!, which are
much smaller than those involving sums. This is the virtue
the hierarchical description: terms describing the effects o
cell content are never negligible compared to the terms
nearby cells, whereas terms describing the effects of dif
ences may be negligible compared to terms for sums. Th
advantages are similar to those of spectral~Fourier trans-
form! methods in homogeneous systems; in a sense one
regard the Walsh transform as the proper generalizatio
the Fourier transform to inhomogeneous systems.

Commercial reservoir simulation programs usually trea
reservoir as a three-component system@5# ~oil, gas, water! in
which flow is governed by Darcy’s law. However, to provid
a simple test of the hierarchical method described above
will consider only one component~oil!, in which case Dar-
cy’s law reduces to the diffusion equation. To see this, be
with Darcy’s law for the velocityv:

v52
K

m
¹P, ~2!

whereK is the permeability,m is the viscosity, andP is the
pressure. Then the continuity equation for the densityr is

dr

dt
52¹•~rv!. ~3!
e
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Linearizing in the small quantityv ~and in the corresponding
small variations inr andP) and defining the bulk modulus
B5rdP/dr, we can express everything in terms ofr:

dr~r ,t !

dt
5¹•@D~r !¹r~r ,t !#, ~4!

whereD(r )5BK(r )/m is an effective diffusivity, very het-
erogeneous in a typical carbonaceous oil reservoir becau
is proportional to the permeabilityK. So the problem we will
actually solve is that of diffusion in a very inhomogeneo
system.

To describe the evolution of the cell contentct(d) of a
cell labeled d ~proportional to the densityr), the most
straightforward discretization of Eq.~4! is

ct1Dt~d!2ct~d!

Dt
5

1

Dr 2(f D~ f !@ct„d1~ f !…2ct~d!#,

~5!

where the sum is over facesf of the celld, andd1( f ) is the
cell in front of the ~directed! face f ~the cell behind it is
alwaysd). When we lump cells, so some of our variables a
Walsh variablesc(d,w), we can write the discretization@Eq.
~5!# in the form

ct1Dt~d,w!5(
s,v

GDt~d,w;s,v !ct~s,v !, ~6!

whereGDt(d,w;s,v) is an influence function describing th
influence of a Walsh variable in the source cells on one in
the destination celld. Before any lumping has occurred, a
Walsh variables have w50, and GDt(d,0;s,0)
5(Dt/Dr 2)D( f ) if d and s are neighbors separated by th
face f . The diagonal influence function
GDt(d,0;d,0)512S(Dt/Dr 2)D( f ), where the sum is ove
the facesf of the celld, and all otherG’s are zero. Equation
~6! is thus equivalent to an EFD algorithm, which requires
smallDt; we have used the practical limit of stability@6#,

Dt5Dr 2/4Dmax, ~7!

whereDmax is the maximum diffusivity in the system.
We now increaseDt to 2Dt; the new influence function is

the convolution

G2Dt~d,w;s,v !5(
e,u

GDt~d,w;e,u!GDt~e,u;s,v !. ~8!

After several such convolutions, the spatial range of the
fluence function is increased, especially in regions of h
diffusivity. Here the pressure~i.e., density! in nearby cells
equalizes rapidly—the contentsc( l ) andc( l 8) of two nearby
cells contribute nearly equally to future contentsc(d):
G(d,0;l ,0)'G(d,0;l 8,0) ~the zeros here are the Walsh ind
ces!. To decide whether two cellsl and l 8 should be lumped
together, we look at the ratio

r5
G~ l ,0;l 8,0!

G~ l ,0;l ,0!
. ~9!
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55 6199HIERARCHICAL APPROACH TO DIFFUSIVE FLOW IN . . .
We lump l and l 8 if r exceeds a lumping thresholdrmax,
which we will tune to maximize the speed of the algorith
~see Fig. 5!. When we decide to lump cellsl and l 8 into a
large cellL ~as in Fig. 1!, we can calculate the new influenc
function in two stages. In the first stage we calculate e
mentsG8(d,w;s,v) in which the destinationcell d takes
coarse values~including L) but s takes values includingl
and l 8. These are the same as the oldG’s unlessd is L, in
which case we obtain from Eq.~1!

G8~L,w0;s,v !5G~ l ,w;s,v !1G~ l 8,w;s,v !,

G8~L,w1;s,v !5G~ l ,w;s,v !2G~ l 8,w;s,v !, ~10!

where as beforew0 meansw with a zero bit appended. In th
second stage, we calculateG9(d,w;s,v) where bothd and
s take valuesL and notl or l 8: we coarsen the source ce
Again, G9(d,w;s,v)5G8(d,w;s,v) unlesss5L, in which
case

G9~d,w;L,v0!5 1
2 @G8~d,w; l ,v !1G8~d,w; l 8,v !#,

G9~d,w;L,v1!5 1
2 @G8~d,w; l ,v !2G8~d,w; l 8,v !#.

~11!

Although we have developed both three dimensional~3D!
and 2D programs, we have done test calculations on a
system to simplify the display~Figs. 2 and 3!. The test sys-
tem has impenetrable barriers and four control parame
N,I ,d, and r . The first two describe the complexity of th
system:N is the system size (16316 to 64364) and the
inhomogeneity parameterI is a normalized standard devia
tion: the standard deviation of the permeability divided
the mean permeability.

The other two parameters are the error toleranced, which
we choose to give an acceptable overall truncation error,
the lumping thresholdrmax @Eq. ~9!, Fig. 5#.

FIG. 2. The permeability distribution used for the 64364 sys-
tem@7#. Halftone density varies linearly with ln(K) or ln(D), in such
a way that the mean halftone density is 0.5 and the minimum
meability displayed~as black! differs from the maximum~white! by
a factor of 43104, for the case of inhomogeneityI520. ~In case of
difficulty in reproducing the figures in print, they are also presen
at the web site http://www.mint.ua.edu/geo/flow/.!
-
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The diffusivity ~i.e., permeability! distribution we have
used is shown in Fig. 2. It is a realization of a log-norm
distribution with fractal spatial correlations, obtained by e
ponentiating a correlated Gaussian distribution descri
elsewhere@7#. We adjust the normalized standard deviati
I by scaling the Gaussian distribution before exponentiat
it. The prefactor that governs the overall scale of the dif
sivity or permeability can be removed from the problem
rescaling time.

The system shown in Fig. 2 is 64364; we specify the
permeability in the smaller-N systems by coarse grainin
~averaging over 232 or 434 cells!. The permeability at a
face is taken to be the average of that in the adjoining ce
As a test initial condition, we use ad-function density con-
centrated in the lower left cell of the system. After an infin
time, the density takes a uniform valuer` ; we evolve the
system until the density in the source cell is 2r` , and show
the result in Fig. 3.

To compare our scheme with an EFD algorithm, we va
the remaining parameter, the toleranced. We plot in Fig. 4
the required CPU time~on a Silicon Graphics R4000PC
Indy, 133 MHz! against the accuracy achieved, defined
the fractional rms error

~error!2[N21(
c

S r~c!2rexact~c!

r`
D 2, ~12!

whererexact(c) is the EFD result to which our result con
verges asd→0.

Note that the speedup factor of our algorithm compared
the EFD algorithm increases rapidly as the allowable erro
increased. It is indicated by an arrow at the error value
1.5%, where it is about 25. Using this factor as a figure
merit for our algorithm, we plot it in Fig. 5 as a function o
the lumping parameterrmaxl @Eq. ~9!#, and choosermax50.9
as an optimal value.

The virtue of our hierarchical algorithm is that it frees
from having to choose a uniform cell sizeDx. The conver-

r-

d

FIG. 3. The final density distribution in the 64364 system with
inhomogeneityI520, showing boundaries of lumped cells. Dens
values are printed at several points, scaled sor`5100. Note that
cell lumping occurs in regions of high permeability.
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6200 55YÜKSEL GÜNAL AND P. B. VISSCHER
gence of the method is controlled by the error tolerancd
rather thanDx or the number of cellsN. We must still
choose a value forN in order to specify the diffusivity at
each face. However, for largeN we will lump each cell many
times before starting the actual evolution@Eq. ~6!#, so the
CPU time for the evolution will become independent of t
spatial resolution of the permeability distribution~i.e., of
N). Figure 6 shows that we have not yet reached t
asymptotic region@this is also apparent from Fig. 3, whic
shows that many of the original~smallest! cells remain after
cell lumping#. Nonetheless, our algorithm is already mu
faster than the EFD, whose CPU time increases asN2Dmax
~becauseDt}Dx2/Dmax}1/NDmax, so the number of time
steps}NDmax, and the CPU time per time step also}N).
This rapid increase of the CPU time of the EFD algorith

FIG. 4. Logarithmic plot of the CPU time required by our hie
archical influence function algorithm, compared to that required
an explicit finite-difference~EFD! algorithm, for 64364 and
32332 systems with inhomogeneityI520. Smaller numbers by
some data points indicate the toleranced (1028–1022).

FIG. 5. Speedup factor as a function of the lumping thresh
r @Eq. ~9!#, in a 32332 system with inhomogeneityI520 and
toleranced51024. Evidently performance improves as we increa
r toward 1.0. Placingr very close to 1.0 risks magnifying the e
fects of small numerical errors, so we usedr50.9 in the other
figures.
is
with N is apparent in Fig. 6. Note that the dependence of th
EFD CPU time on the diffusivityDmax @Eq. ~7!# at the single
point of highest diffusivity gives it very large statistical fluc
tuations. ~For example, there is an upward fluctuation
N532332 which exaggerates the speedup factor for th
N.! The averageDmax clearly will increase withN ~the ex-
treme value in a large sample is likely to be larger than in
small sample! but the increase can be shown to be slow
thanN itself, so we have ignored it in extrapolating the da
of Fig. 6 to the right with a dashed line of slope 2. The curv
for our hierarchical algorithm has no such large statistic
fluctuations. We are not yet in the asymptotic region where
becomes independent ofN; this is also apparent from Fig. 3,
which shows that many of the original~smallest! cells re-
main after cell lumping. However, the advantage over t
EFD algorithm is already substantial.

We are using the explicit finite-difference algorithm a
our point of comparison, not because it is the most efficie

TABLE I. Speedup factor as a function of system sizeN, for
three values of the inhomogeneityI . Tolerance isd51024. The
large values atN532332 are due to a fluctuation ofDmax as de-
scribed in the text.

System size
I 838 16316 32332 64364

10 0.2 1.6 15 18
20 0.3 3.0 32 43
40 0.3 5.2 63 71

y

d

FIG. 6. Logarithmic plot of the CPU time required by the EFD
algorithm and our hierarchical algorithm~labeled ‘‘Hier’’!, versus
the spatial resolution~the number of cellsN). The dashed exten-
sions to the right of the data points indicate the expected asympt
behavior (N2 or N0, respectively!; the EFD curve is less smooth
because of large statistical fluctuations in the extremal va
Dmax.
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55 6201HIERARCHICAL APPROACH TO DIFFUSIVE FLOW IN . . .
existing algorithm, but because it is the simplest. Impli
algorithms can be stable for largerDt, but incur errors of
order 100% whenDt exceeds ours by more than a factor
order 2, so this does not affect our conclusions.

The dependence of the speedup factor on the inhom
neity is shown in Table I. Evidently the influence-functio
algorithm is most advantageous in highly inhomogene
systems.

Although the method described here has some feature
common with methods already in common use in grid-ba
numerical simulation, none of these older methods
proaches its efficiency for inhomogeneous systems. The
of coarsening cells is used in ‘‘multigrid’’ methods@8#. For
example, the solution of Laplace’s equation by the relaxat
method is very slow on a fine grid. It can be speeded up
doing a few iterations of relaxation on a larger grid to get
coarse features of the solution correct, and then returnin
the fine grid to improve the finer features. Computatio
fluid dynamics codes often use an ‘‘adaptive grid’’ meth
c-

e

t

e-

s

in
d
-
ea

n
y
e
to
l

@9#, wherein larger grid sizes are used in regions where fie
do not vary rapidly in space, and finer grids are used wh
there are fine-scale variations in the fields. These method
not retain subgrid-scale information such as is contained
our Walsh variables. Unlike in our approach, the time inc
ment cannot be increased above what is stable on the fi
grid.

In conclusion, we have shown that a hierarchical alg
rithm based on the dynamic renormalization group and
Walsh transform can simulate diffusive flow in an inhom
geneous system much more efficiently than conventio
finite-difference algorithms. This occurs because the ra
power-law dependence of CPU time on the fundamen
scalesDr andDt is replaced in the hierarchical method by
logarithmic dependence.

The work described here was partially supported by
U.S. Department of Energy under Cooperative Agreem
No. DE-FC02-91ER75678.
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